Input following command:
ros2 run yahboomcar_mediapipe 05_FaceEyeDetection
Code path: ~/orbbec_ws/src/yahboomcar_mediapipe/yahboomcar_mediapipe/05_FaceEyeDetection.py
x#!/usr/bin/env python2
# encoding: utf-8
#import ros lib
import rclpy
from rclpy.node import Node
from geometry_msgs.msg import Point
import mediapipe as mp
from cv_bridge import CvBridge
from sensor_msgs.msg import CompressedImage,Image
#import define msg
from yahboomcar_msgs.msg import PointArray
#import commom lib
import cv2 as cv
import numpy as np
import time
print("import done")
class FaceEyeDetection(Node):
def __init__(self,name):
super().__init__(name)
self.bridge = CvBridge()
self.eyeDetect = cv.CascadeClassifier( "/home/yahboom/orbbec_ws/src/yahboomcar_mediapipe/yahboomcar_mediapipe/file/haarcascade_eye.xml")
self.faceDetect = cv.CascadeClassifier(
"/home/yahboom/orbbec_ws/src/yahboomcar_mediapipe/yahboomcar_mediapipe/file/haarcascade_eye.xml")
self.pub_rgb = self.create_publisher(Image,"/FaceEyeDetection/image", 500)
def cancel(self):
self.pub_rgb.unregister()
def face(self, frame):
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
faces = self.faceDetect.detectMultiScale(gray, 1.3)
for face in faces: frame = self.faceDraw(frame, face)
return frame
def eye(self, frame):
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
eyes = self.eyeDetect.detectMultiScale(gray, 1.3)
for eye in eyes:
cv.circle(frame, (int(eye[0] + eye[2] / 2), int(eye[1] + eye[3] / 2)), (int(eye[3] / 2)), (0, 0, 255), 2)
return frame
def faceDraw(self, frame, bbox, l=30, t=10):
x, y, w, h = bbox
x1, y1 = x + w, y + h
cv.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 255), 2)
# Top left x,y
cv.line(frame, (x, y), (x + l, y), (255, 0, 255), t)
cv.line(frame, (x, y), (x, y + l), (255, 0, 255), t)
# Top right x1,y
cv.line(frame, (x1, y), (x1 - l, y), (255, 0, 255), t)
cv.line(frame, (x1, y), (x1, y + l), (255, 0, 255), t)
# Bottom left x1,y1
cv.line(frame, (x, y1), (x + l, y1), (255, 0, 255), t)
cv.line(frame, (x, y1), (x, y1 - l), (255, 0, 255), t)
# Bottom right x1,y1
cv.line(frame, (x1, y1), (x1 - l, y1), (255, 0, 255), t)
cv.line(frame, (x1, y1), (x1, y1 - l), (255, 0, 255), t)
return frame
def pub_img(self, frame):
self.pub_rgb.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8"))
def main():
rclpy.init()
capture = cv.VideoCapture(0)
capture.set(6, cv.VideoWriter_fourcc(*'XVID'))
capture.set(cv.CAP_PROP_FRAME_WIDTH, 640)
capture.set(cv.CAP_PROP_FRAME_HEIGHT, 480)
print("capture get FPS : ", capture.get(cv.CAP_PROP_FPS))
pTime, cTime, content_index = 0, 0, 0
dat_file = "./file/shape_predictor_68_face_landmarks.dat"
face_eye_detection = FaceEyeDetection('face_eye_detection')
content = ["face", "eye", "face_eye"]
while capture.isOpened():
ret, frame = capture.read()
# frame = cv.flip(frame, 1)
action = cv.waitKey(1) & 0xFF
if action == ord("f") or action == ord("F"):
content_index += 1
if content_index >= len(content): content_index = 0
if content[content_index] == "face": frame = face_eye_detection.face(frame)
elif content[content_index] == "eye": frame = face_eye_detection.eye(frame)
else: frame = face_eye_detection.eye(face_eye_detection.face(frame))
if action == ord('q') or action == ord("Q"): break
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
text = "FPS : " + str(int(fps))
cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)
cv.imshow('frame', frame)
face_eye_detection.pub_img(frame)
capture.release()
cv.destroyAllWindows()